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will require further study of 1 and related species. The generality 
of this reaction is being explored. 
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Despite the synthetic usefulness of radical cyclization reactions,1 

the cyclization pathway is mainly limited to 5-exo closure along 
with somewhat less efficient 6-exo and 6-endo closure due to 
stereoelectronic and geometric reasons.2 A fundamentally new 
approach for the formation of five- and six-membered-ring radicals 
from acyclic precursors was sought, and we report here an un­
precedented radical cyclization using 2-phenyl-JV-aziridinyl imines 
which we believe has considerable synthetic potential for the 
formation of carbon-carbon bonds. Our approach is outlined in 
Scheme I and is based on three factors along with the original 
Eschenmoser reaction.3 First, alkyl radicals are known to add 
to oxime ethers.4 Second, /3-fragmentation of three-membered 
rings is a facile process due to the relief of ring strain.5 Third, 
consecutive /3-fragmentations via ejection of styrene and nitrogen 
are expected to be fast processes.6 

Our initial study focused on the use of the A -̂aziridinyl imines 
as radical acceptors. TV-Aziridinyl imines were prepared in 60-80% 
yield by treatment of aldehydes and ketones in ethanol with a 
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Table I. Radical Cyclization of 2-Phenyl-JV-aziridinyl Imines 

substrate0 

la: n=l, X=Br 
lb: n=l, X=SePh 
fc: n=2, X=Br 

'A 
3 

^ R^N-A 

5a: R=H 
5b: R=CH3 

time, h 

4 
2 
2 

4 

3 
3 

product (yield, %) 

E (£/E 

2a (30) 
2a (75)b 

2c (85) 

4(89) 

A. 
SnBu9 

6a (84) 
6b (96) 

7a: R=H 4 8 a (87/13)c 9 a (67) 
7b: R=CH3 6 8b (94/6)c 9b (92) 

0 E = COOEt, A = 2-phenyl-JV-aziridinyl group. 'Nine percent of 
the reduction product was obtained. 'The ratio was determined by 1H 
NMR analysis and refers to 8a/9a and 8b/9b, respectively. 

pentane solution of l-amino-2-phenylaziridine at 0 0C, and a 
mixture of syn and anti isomers was used. CAUTION! 1-
Amino-2-phenylaziridinium acetate is explosive, and proper 
precautions should be taken whenever it is used.1 Treatment 
of the bromide la (Table I) with W-Bu3SnH (2.0 equiv) and AIBN 
(0.1 equiv) in benzene (0.01 M in the bromide) at 80 0C for 4 
h afforded 30% of 2a along with 33% of the JV-aziridinyl-
piperidine.8 Under the same conditions, the use of the phenyl 
selenide lb obviated the problem of intramolecular N-alkylation 
and gave 2a in 75% yield. Ic was cleanly cyclized to 2c, and there 
was no evidence of the N-alkylated product. As shown in Table 
I, radical cyclization of 3, 5a, and 7a using structurally different 
radical precursors proceeded smoothly, yielding the cyclized 
products in high yields.910 Similarly, the keto hydrazones 5b and 

(7) CAUTION! After preparation of l-amino-2-phenylaziridinium acetate 
(approximately 10-g scale) by the known procedure (Muller, R. K.; Joos, R.; 
Felix, D.; Schreiber, J.; Wintner, C; Eschenmoser, A. Org. Synth. 1976, 55, 
114), it exploded during storage at room temperature, causing minor injuries. 
The cause of the explosion is unclear at present. Thus, it is desirable to use 
a pentane solution of l-amino-2-phenylaziridine for the preparation of JV-
aziridinyl imines. 

(8) The byproduct was l-(2'-phenylaziridinyl)-4,4-bis(ethoxycarbonyl)-
piperidine. Furthermore, it was obtained in 75% yield without the formation 
of 2a when la was treated with H-Bu3SnH in refluxing benzene for 4 h without 
the addition of AIBN. 1H NMR (300 MHz, CDCl3, -50 "C): i 1.19 (t, 3 
H , / = 7 . 1 Hz), 1.21 (t, 3 H , / = 7 . 1 Hz), 1.89 (t, 2 H, / = 11.5Hz), 2.10 
(d, I H , / = 4.5 Hz), 2.15 (d, I H , / = 7.64 Hz), 2.28-2.51 (m, 4 H), 2.72 
(dd, I H , / = 4.8, 7.9 Hz), 3.08-3.11 (m, 2 H), 4.12 (q, 2 H, / = 7.1 Hz), 
4.16 (q, 2 H, / = 7.1 Hz), 7.16-7.32 (m, 5 H). IR (NaCl): 2952, 1733, 1452, 
1367,1246,1129 cm-'. HRMS (M+): calcd for C19H26O4N2 346.1892, found 
346.1877. 
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7b were cyclized without significant differences in their reactivity. 
Furthermore, it is noteworthy that no reduction products were 
observed except for lb. 

We have briefly examined the feasibility of the cyclization-
intermolecular addition sequence" because this illustrates a unique 
feature of the present method, demonstrating the formation of 
two carbon-carbon bonds in succession at the same carbon (eq 
I).12 The addition of a 0.1 M benzene solution of «-Bu3SnH (2 

EtO2C .CO2Et 

N-A 

SEWG 
n-Bu3SnH_ 

AIBN 

E E f 

^ - ^ ^ n 

(1) 

10 

EWG 
11: EWG = CN (86%) 
12 : = COOMe (87%) 

equiv) and AIBN (0.1 equiv) by a syringe pump over 2 h to a 
0.1 M refluxing benzene solution of the iodide 10 and acrylonitrile 
(10 equiv) with additional stirring for 1 h afforded 11 in 86% yield. 
A similar result was realized with methyl acrylate. 

Our attention was next given to the use of the aziridinyl imines 
as radical precursors, and our approach relied on intermolecular 
addition of n- Bu3Sn radical to an aziridinyl imine group to generate 
the a-«-Bu3Sn-substituted carbon-centered radical, as shown in 
eq 2. Thus, treatment of 13a with /1-Bu3SnH (0.3 equiv) and 

A - N 
K H-Bu3SnH 

N-A 
AIBN 

13a n=l,R=Me 
13b n=l,R=H 
13c n=2, R=H 

S n ' R 

Sn=n-Bu3Sn 

(2) 

8a (82%) 
14b (62%) 
14c (65%) 

AIBN (0.1 equiv) in toluene (0.05 M in the substrate) at 110 0C 
for 6 h afforded 8a in 82% yield,13 demonstrating the efficacy of 
an aziridinyl imine group as a radical precursor as well as a radical 
acceptor. This cyclization will be especially valuable in the 
construction of cyclic systems bearing a carbon-carbon double 
bond. An additional example using the cinnamyl group as a 
radical acceptor, in which further functionalization of the W-Bu3Sn 
group would be possible,14 is shown in eq 3.15 

A - N 

n-Bu3Sru\ 

AIBN 
n-Bu3Sn & Ph 

(3) 

16 (92%) 

In conclusion, the radical cyclization of aziridinyl imines pro­
vides a reliable method for the formation of five- and six-mem-
bered-ring radicals. The ability of aziridinyl imines to function 
as radical precursors as well as radical acceptors enhances the 
synthetic utility of the present method. Further studies on radical 
reactions using aziridinyl imines are now in progress. 
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Since D-myo-inositol 1,4,5-trisphosphate (D-1,4,5-IP3) was 
identified as the second messenger in a vast number of important 
signal transduction processes,1 numerous syntheses of 1,4,5-IP3 
and other inositol phosphates have been reported.2,3 These studies 
have established effective methodology for the polyphosphorylation 
of partially protected myoinositol derivatives, but no generalizable 
synthesis of enantiomerically pure inositol derivatives has been 
reported whereby the protection pattern and functionality may 
be controlled in a versatile manner. Our approach to this problem 
was inspired by biosynthetic considerations. The enzyme myo-
inositol-3-phosphate synthase (EC 5.5.1.4) converts glucose-6-
phosphate to D-nyo-inositol 3-phosphate by an interesting sequence 
of chemical transformations (Scheme I), including a stereospecific 
intramolecular aldol reaction (i.e., 1 —• 2 —• 3).4 Herein we report 
our initial studies on a biomimetic conversion of glucopyranoside 
derivatives to enantiomerically pure myo-inositol derivatives.5 

Our approach relies on the Ferrier reaction to generate a 
"mercury enolate" 8 that, as a functional equivalent of 2, undergoes 
the desired carbocyclization process to provide the inosose 7 
(Scheme II). Although the Ferrier reaction is well-established 
for the stereoselective conversion of unsubstituted enol ethers 4 
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